Roll No.
Total No. of Questions : 07

$$
\begin{gathered}
\text { BCA / DCA / B.Sc.(IT) } \quad \text { (Sem.-1) } \\
\text { MATHEMATICS - I } \\
\text { Subject Code : BSIT/BSBC-103 } \\
\text { M.Code : 10045 } \\
\text { Date of Examination : 14-01-2023 }
\end{gathered}
$$

Time : 3 Hrs .
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

1. Write briefly:
a) Explain with illustration :
i) Symmetric Matrix
ii) Skew symmetric Matrix
iii) Transpose of a Matrix
iv) Unitary Matrix
b) Let $\mathrm{A}=\{1,2,3,4,54,6\} \mathrm{B}=\{2,4,6,8\}$ then show that $\mathrm{A} \backslash \mathrm{B}{ }_{8}^{\circ} 8 \mathrm{~B}$ $\backslash \mathrm{A}$.
c) Define Recurrent relation with example.
d) Solve $\mathrm{S}(k) \mathrm{S}(k-1)+\mathrm{S}(k-2)=0$ where $\mathrm{S}(0)=1, \mathrm{~S}(1)=2$.
e) If p stande for the statement, "I do not like coffee" and q stands for the statement, "I like tea'. Then what does $\sim p \wedge q$ stands for?
f) Show that maximum number of edges in a single graph with h vertices is $\frac{n(n+1)}{2}$.
g) Find all the partitions for set $\mathrm{A}=\{a, b, c\}$.
h) Explain the concept of propositions over a universe.
i) Find X and Y if $X+Y=\begin{array}{cc}7 & -2 \\ 2 & 6\end{array}$

$$
\mathrm{X}-\mathrm{Y}=\begin{array}{cc}
3 & 0 \\
\mathbb{C} 2 & 3
\end{array}
$$

j) Define sample and multigraph with an example.

SECTION - B

2. a) A college awarded 38 medals in Foot-ball, 15 in basket ball and 20 medals in cricket. If there medals went to a total of 58 men and only three men got medals in all the three sports, how many received medal in exactly two of the three sports?
b) Let $\mathrm{A}=\left\{x: x\right.$ is multiple of $\left.2, x \oslash_{\mathrm{N}}\right\}$

$$
\begin{aligned}
& \mathrm{B}=\{x: x \text { is multiple of } 5, x \triangleleft \mathrm{~N}\} \\
& \mathrm{C}=\{x: x \text { is multiple of } 10, x \triangleleft \mathrm{~N}\}
\end{aligned}
$$

Then find $A \cup(B \vec{\nabla} C),(A \vec{\nabla} B) \vec{\nabla} C, A \cup(B \cup C)$.
3. a) Test the validity of:

Unless we control population, all advances resulting from planning will be nullified but this must not be allowed to happen. Therefore we must somehow control population.
b) Prove that $[(p \downarrow q) \times(q \downarrow r)] \Rightarrow(p \downarrow r)$ is a tautology,
4. a) If $\left.\mathrm{A}=\begin{array}{lll}2 & 3 & 4 \\ 4 & 5 & 6\end{array} \right\rvert\,$ and $k_{1}=1, k_{2}=2$ then verify that $\left(k_{1}+k_{2}\right) \mathrm{A}=k_{1} \mathrm{~A}+k_{2} \mathrm{~A}$.

$$
\begin{array}{lll}
1 & 0 & 0
\end{array}
$$

b) If $A=0 \quad 1 \quad 0$ atikn determine A^{2}.
5. Prove that an undirected graph possesses a Eulerian circuit if and only if it is connected and has its verices of even degree.
6. a) Prove that associativity holds over conjunction by using propositional calculus.
b) Solve $\mathrm{S}(k)-7 s(k-1)+10 \mathrm{~S}(k-2)=6+8 k$ with $\mathrm{S}(0)=1$ and $\mathrm{S}(1)=2$.
7. Use the principle of mathematical Induction to prove that
$1.3+2.4+3.5+\ldots+n(n+2)=\frac{n(n+1)(2 n+7)}{6}$ for any natural number n.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

